
Regression Testing Ajax Applications:
Coping with Dynamism

Danny Roest
Delft University of Technology

The Netherlands
D.Roest@student.tudelft.nl

Ali Mesbah
Delft University of Technology

The Netherlands
A.Mesbah@tudelft.nl

Arie van Deursen
Delft University of Technology

The Netherlands
Arie.vanDeursen@tudelft.nl

Abstract—There is a growing trend to move desktop applica-
tions towards the web using advances made in web technologies
such as AJAX. One common way to provide assurance about
the correctness of such complex and evolving systems is through
regression testing. Regression testing classical web applications
has already been a notoriously daunting task because of the
dynamism in web interfaces. AJAX applications pose an even
greater challenge since the test case fragility degree is higher
due to extensive run-time manipulation of the DOM tree
and asynchronous client/server interactions. In this paper, we
propose a technique, in which we automatically generate test
cases and apply pipelined oracle comparators along with gen-
erated DOM templates, to deal with dynamic non-deterministic
behavior in AJAX user interfaces. Our approach, implemented
in CRAWLJAX, is open source and provides a set of generic
oracle comparators, template generators, and visualizations of
test failure output. We describe two case studies evaluating
the effectiveness, scalability, and required manual effort of the
approach.

Keywords-regression testing; ajax; web applications

I. INTRODUCTION

There is a growing trend of moving desktop applications
to the Web. Well-known examples include Google’s mail and
office applications. One of the implications of this move to
the web is that dependability [13] of web applications is
becoming increasingly important [4], [7].

One of the key enabling technologies currently used for
building modern web applications is AJAX, an acronym for
“Asynchronous JAVASCRIPT And XML” [6]. While the use
of AJAX technology positively affects the user-friendliness
and the interactiveness of web applications [11], it comes at
a price: AJAX applications are notoriously error-prone due
to, e.g., the stateful and asynchronous nature as well as the
extensive use of the Document Object Model (DOM) and
(untyped) JAVASCRIPT on the client.

As software evolves, one common way to provide assur-
ance about the correctness of the modified system is through
regression testing. This involves saving and reusing test
suites created for earlier (correct) versions of the software
[3], with the intent of determining whether modifications
(e.g., bug fixes) have not created any new problems/bugs.

An often used way to obtain an oracle for regression
testing, is to compare new outputs with saved outputs

obtained from runs with an earlier version of the system. For
web applications, oracle comparators [17] typically analyze
the differences between server response pages [15].

For highly dynamic web applications, this comparison-
based approach suffers from a high probability of false
positives, i.e., differences between old and new pages that
are irrelevant and do not point to an actual (regression) fault
[15], [18]. For AJAX applications, the run-time dynamic
manipulation of the DOM-tree as well as the asynchronous
client/server interactions make it particularly hard to control
the level of dynamism during regression testing. It is the
objective of this paper to find solutions for this control-
lability problem, thus facilitating robust comparison-based
regression testing of AJAX applications.

We start our paper with a brief summary of our earlier
work on automated testing of AJAX applications [10], [12],
since this provides the context and motivation for the present
paper. Our results, however, are applicable in a wider context
as well: most of our methods and techniques can also be
applied if the test cases are obtained manually (e.g., through
a capture-and-replay tool such as Selenium).

Next, in Section III we describe in detail four challenges
involved in the regression testing of AJAX applications. In
Section IV, we then cover our approach to tackle these
challenges. In particular, we propose a number of ways
to control and refine the process of comparing two user
interface states occurring in AJAX applications.

In Section V we summarize our implementation of the
proposed methods in our web testing infrastructure [12],
which we subsequently use to conduct two case studies (a
simple open source contact management system, as well
as the highly dynamic Google Reader application). In Sec-
tion VII we reflect on the lessons we can draw from this
research, after which we conclude with a summary of related
work, contributions, and future research.

II. BACKGROUND

In our previous work [10], we proposed a new type of web
crawler, called CRAWLJAX, capable of exercising client-
side code, detecting and executing doorways to various
dynamic states of AJAX-based applications within browser’s

2010 Third International Conference on Software Testing, Verification and Validation

978-0-7695-3990-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICST.2010.59

127



Todo List

Add Item

Yes

No

Remove

Confirmation

Add

Cancel
Save

Main Page

ToDo

Figure 1. Navigational Model of TODO.

dynamically built DOM. While crawling, CRAWLJAX infers
a state-flow graph capturing the states of the user interface,
and the possible event-based (e.g., onclick, onmouseover)
transitions between them, by analyzing the DOM before and
after firing an event.

While running the crawler can be considered as a first
full smoke test pass, the derived state machine itself can
be further used for testing purposes. More recently, we
proposed an approach for automatic testing of AJAX user
interfaces, called ATUSA [12], in which we automatically
generate (JUnit) test cases from the inferred state-flow graph.
Each test case method represents the sequence of events
from the initial state to a target state. The state transitions
are thus accomplished by firing actual DOM events on
the elements1 of the page in a real browser. Our gold
standard [3] is composed of structural invariants (see [12],
[2]) defined by the tester and the saved output (DOM trees)
of a previous execution-run on a trusted version of the
application.

Running Example. In this paper we illustrate the
challenges of regression testing and our approach with a
simple TODO AJAX application in which new items can be
added and existing ones removed. The navigational model
of TODO is depicted in Figure 1. To obtain the state-flow
graph shown in Figure 2, CRAWLJAX:

1) clicks Todo - Add - Save - Remove - Yes. Cycle
detected: Stop in state1. (# of Items in the list: 0)

2) backtracks to state4: Todo - Add - Save - Remove. (#
of Items: 0)

3) clicks No. Cycle detected: Stop in state2. (# of Items:
1)

4) backtracks to state2: Todo - Add (# of Items: 1)
5) clicks Cancel, ends up in state3 (# of Items: 1), and

stops.
Note that the generated graph has an extra state, since

state1 (empty list) and state3 (list with one item) on the
Todo List page are not equivalent. After the crawling phase,
based on this graph ATUSA generates four test cases that
test:

1For the sake of simplicity, we call such elements ‘clickable’ in this
paper, however, they could have any type of event-listener.

index

state1

Todo; /HTML[1]/BODY[1]/DIV[1]/A[1]

state2

Add; /HTML[1]/BODY[1]/DIV[1]/DIV[1]/A[1]

state3

Save; /HTML[1]/BODY[1]/DIV[1]/DIV[1]/A[1] Cancel; /HTML[1]/BODY[1]/DIV[1]/DIV[1]/A[2]

state4

Remove; /HTML[1]/BODY[1]/DIV[1]/UL[1]/LI[1]/A[1]

Yes; /HTML[1]/BODY[1]/DIV[1]/A[1]

No; /HTML[1]/BODY[1]/DIV[1]/A[2]

Figure 2. Inferred State-flow Graph for TODO.

1public void testcase_1_2_3_4_5(){
2try {
3FormHandler.handleFormElements(browser);
4//Todo href=todo.php onclick=load() xpath=/DIV[1]/A[1]
5assertTrue("Event fired: Todo", fireEvent(1, "Todo"));
6assertTrue("Invariants passed in state: 1" ,

checkInvariants(browser));
7assertTrue("State equivalent with: 1", compareStates(1,

browser.getDom()));
8...} }

Figure 3. A Generated Test Case for TODO.

• The initial state
• Event sequence: Todo - Add - Save - Remove - Yes
• Event sequence: Todo - Add - Save - Remove - No
• Event sequence: Todo - Add - Cancel
Figure 3 shows the generated test case partially. For

each test case, the browser is first put in the initial index
state of the web application. From there, input elements are
filled if present and events are fired on the clickables. After
each event invocation, the resulting state in the browser is
checked against the invariants (line 6) and compared with
the expected state in the database (line 7).

Note that a test case succeeds if: every (clickable) element
in the test case can be found and its event can be fired, no
invariants are violated, and every actual state is equivalent to
the expected state. Ideally, for the unchanged application the
test cases should all pass, and only for altered code failures
should occur, helping the tester to understand what has truly
changed. In practice, many issues and challenges may arise,
which are discussed in the next section.

III. AJAX REGRESSION TESTING CHALLENGES

Nondeterministic Behavior. Most regression testing
techniques assume [14] that when a test case is executed, the
application under test follows the same paths and produces
the same output, each time it is run on an unmodified pro-
gram. Multiple executions of an unaltered web application
with the same input may, however, produce different results.
Causes of such nondeterministic [8] behavior can be, for

128



<H1>Todo items</H1>
<UL id="todo">

<LI>
Cleaning <A href="#" onclick="remove(0)">Remove</A>

</LI>
</UL>
<A href="#" onclick="addItem()">Add</A>
<P class="past">Last update: 22-08-2009 16:43</P>

<H1>Todo items</H1>
<UL id="todo">

<LI>
Groceries <A href="#" onclick="remove(1)">Remove</A>

</LI>
<LI>

Cleaning <A href="#" onclick="remove(0)">Remove</A>
</LI>

</UL>
<A href="#" onclick="addItem()">Add</a>
<P class="past">Last update: 22-08-2009 16:50</P>

Figure 4. Two DOM string fragments of TODO at different timestamps.

instance, (HTTP) network delays, asynchronous client/server
interactions, non-sequential handling of requests by the
server, randomly produced or constantly changing data on
real-time web applications.

For instance, consider a web page that displays the current
date-time (see Figure 4). Simply comparing the actual state
with the gold standard results in many failures (of nonexis-
tent bugs) that are due to the mismatches in the date-time
part of the page. This characteristic makes regression testing
web applications in general [17] and AJAX in particular
notoriously difficult.

Dynamic User Interface States. A recurring problem
is when a certain test case is executed multiple times and
each run changes the state on the back-end. Consider a test
case that adds a to-do item to the list. Figure 4 shows two
DOM fragments of the TODO example at different times,
displaying the list of to-do items. The test case expects
the first fragment and the second fragment represents the
current DOM in the browser. When compared naively, the
test reports a failure since (in addition to the date-time part)
the content of the lists does not match. An often used but
cumbersome approach for this problem is to reset the back-
end to an initial state before executing the test case. The
challenge here is making the oracle comparator oblivious to
such valid differences.

State Transitions. In AJAX applications, state transitions
are usually initiated by firing events on DOM elements
having event-listeners. To be able to traverse the state space
during testing, such clickable elements have to be identified
on the run-time DOM tree first. One common way to
identify such elements is through their XPath expression,
which represents their position on the DOM tree in relation
to other elements. DOM elements, however, can easily
be moved, changed, or replaced. As a consequence the
clickable element cannot be detected, and therefore the

preCondition = new RegexPreCondition("<H1>Todo items </H1>"
);

attributeOracle = new AttributeOracleComparator("class");
oraclePreCondition = new OraclePreCondition(

attributeOracle , preCondition);

Figure 5. An attribute oracle comparator with a precondition.

test fails. A worse scenario is that a similar element is
mistakenly selected, which causes a transition to a different
state than expected. For instance, consider a test case that
uses the XPath expression of the remove clickable of the
Cleaning item on the first DOM fragment of Figure 4 (e.g,
/DIV[1]/UL[1]/LI[1]/A[1]). When the same test case
is run on an updated list, which contains the Groceries
item, naively firing the onclick event on the element found
with the XPath expression will remove the Groceries item
instead of the intended Cleaning one. Spotting the correct
clickable element with a high degree of certainty is thus very
important for conducting robust regression testing of AJAX
user interfaces.

Detecting Added and Removed States. A generated
test suite is generally not able to test newly added states.
At the same time, states that are removed by the developer
intentionally will also result in a failure. For example, when
a search option is added to TODO, previously generated
test cases have to be updated to include this new part.
One common solution is to update the test suite manually
to include the changes. For large numbers of changes,
however, this becomes a tedious and error-prone task for the
tester. Another solution is to regenerate the whole test suite
automatically. A side effect of this approach is that it is not
possible to see which states were added and removed easily.
The challenge is thus updating the test suite automatically
and maintaining as much information as possible from the
old test suite to detect the changes.

IV. OUR APPROACH

In this section we describe our approach for handling the
challenges described in Section III.

A. Determining State Equivalence

Stripping the Differences. Oracle comparators in
the form of a diff method between the current and the
expected state are usually used [17], [15] to handle non-
deterministic behavior in web applications. In our approach,
each comparator is exclusively specialized in comparing the
targeted differences from the DOM trees by first stripping
the differences, defined through e.g., a regular expression
or an XPath expression, and then comparing the stripped
DOMs with a simple string comparison.

Oracle Comparator Preconditions. Applying these
generic comparators can be very effective in ignoring nonde-
terministic real-time differences, but at the same time, they

129



//check on Add Contact page
preCondition = new RegexCondition("Add Contact");
//check whether ’John Doe’ does not already exist
condition = new JavaScriptCondition("$.ajax({ url: ’ajax/

home.php’, async: false }).responseText.indexOf(’John
Doe ’)==-1");

crawlConditions.add(new CrawlCondition("AddOnce", "Only
add John Doe once", condition , preCondition));

Figure 6. A JAVASCRIPT crawl condition, with regular expression
precondition, for adding a contact once.

can have the side-effect of missing real bugs because they are
too broad. To tackle this problem, we adopt preconditions,
which are conditions in terms of boolean predicates, to
check whether an oracle comparator should be applied
on a given state. A comparator can have zero, one, or
more preconditions, which all must be satisfied before the
comparator is applied.

Going back to our TODO DOM fragments in Figure 4, one
could use an Attribute comparator to ignore the class
attribute differences of the <p> element when comparing
the states. Since this combination is quite generic, we
certainly do not wish to ignore all the occurrences of the
<p> element with a class attribute in this application. To
that end, we combine the Attribute comparator with a
precondition that checks the existence of a pattern, e.g.,
<H1>Todo items</H1>, before applying the comparator on
each state, as shown in Figure 5.

We have created the following types of conditions that
can be used for different purposes:

1) Regular expression condition returns true iff the
regular expression is satisfied.

2) XPath expression condition returns true iff the XPath
expression returns at least one DOM element.

3) JavaScript expression condition returns true iff the
JAVASCRIPT expression evaluates to true.

4) OR condition returns true iff one of the two specified
conditions returns true.

The Regular and XPath expression conditions also have an
inverse variant for more flexibility.

Crawling Conditions. The nondeterministic behavior
can affect the crawling phase as well, resulting in crawling
unwanted states and generating obsolete test cases. In order
to have more control on the crawling paths, we use crawl
conditions, conditions that check whether a state should
be visited. A state is crawled only if the crawl conditions
are satisfied or no crawl condition is specified for that
state. Figure 6 shows an example of a JAVASCRIPT crawl
condition with a regular expression precondition.

Oracle Comparator Pipelining. When comparing
DOM states, there are often multiple types of differences,
each requiring a specific type of oracle comparator. In our
approach, we combine different comparators in a technique

String 
Comparison

<H1>Todo items</H1>
<UL id="todo">
 <LI>
  Cleaning <A href="#" 
onclick="remove(0)">Remove</A>
 </LI>
</UL>
<A href="#" onclick="addItem()">Add</A>
<P class="past">Last update: 2208 16:43</P>

<H1>Todo items</H1>
<UL id="todo">
 <LI>
 Groceries <A href="#" 
onclick="remove(1)">Remove</A>
 </LI>
 <LI>
 Cleaning <A href="#" 
onclick="remove(0)">Remove</A>
 </LI>
</UL>
<A href="#" onclick="addItem()">Add</A>
<P class="today">Last update: 2308 13:18</P>

ListOracleComparator

<H1>Todo items</H1>
<A href="#" onclick="addItem()">Add</A>
<P class="past">Last update: 2208 16:43</P>

<H1>Todo items</H1>
<A href="#" onclick="addItem()">Add</A>
<P class="today">Last update: 2308 13:18</P>

<H1>Todo items</H1>
<A href="#" onclick="addItem()">Add</A>
<P class="">Last update: 2208 16:43</P>

<H1>Todo items</H1>
<A href="#" onclick="addItem()">Add</A>
<P class="">Last update: 2208 13:18</P>

AttributeOracleComparator

DateOracleComparator

<H1>Todo items</H1>
<A href="#" onclick="addItem()">Add</A>
<P class="">Last update: </P>

<H1>Todo items</H1>
<A href="#" onclick="addItem()">Add</A>
<P class="">Last update: </P>

String 
Comparison

Figure 7. Oracle Comparator Pipelining for TODO.

<UL id="todo">([ˆ<]*
<LI>[ˆ<]*

<A href="[ˆ"]*" onclick="[ˆ"]*">[ˆ<]*</A>[ˆ<]*
</LI>[ˆ<]*)*

</UL>

Figure 8. Generated template for the TODO list.

we call Oracle Comparator Pipelining (OCP). Oracle Com-
parators can strip their targeted differences from the DOM
and the idea is to pass this stripped output as input to the
next comparator. When all differences are stripped, a simple
and fast string comparison can be used to test whether two
states are equivalent. Figure 7 shows an example of how two
HTML fragments are compared through a set of pipelined
comparators.

Template Generation. Whereas textual differences
caused by a changed state in the back-end can relatively
easy be supported, differences in structures are more difficult
to capture. For example the structure of the to-do list page
changes each time a test case adds a new to-do item. Web
applications often contain many structures with repeating
patterns such as tables and lists in which the state changes
are manifested.

To support these structural differences, our technique
scans the DOM tree for elements with a recurring pattern
and automatically generates a template that captures the
pattern. The templates are defined through a combination of
HTML elements and regular expressions. Figure 8 depicts
the generated template for the list pattern of Figure 4.

130



<UL id="todo">
([\s]*<LI>[\s]+

[a-zA-Z0-9 ]{2,100}<A href="#" onclick="remove([0-9]+)
">Remove</A>[\s]*

</LI>[\s]*)*
</UL>

Figure 9. An augmented template that can be used as an invariant.

By supporting repeating patterns, more similar states can
be determined equivalent, and as a consequence the state
space for regression testing can be reduced. For example
state1 and state3 in Figure 2 can now be seen as one equal
state.

These generated templates can also be augmented manu-
ally and used as invariants on the DOM tree. Figure 9 shows
an invariant template that checks the structure of the list,
whether the to-do item is between 2 and 100 alpha numeric
characters, and if an item’s identifier is always an integer
value.

To deal with huge number of state comparisons in the
crawling and testing phase, for each visited state a hash code
is created of the stripped DOM tree after the pipelining pro-
cess. This hash code is saved for each state and can be used
to quickly compare states. A new hash code is calculated
only when the oracle comparator pipelining configuration
changes.

B. Resolving Clickables

To replay a test case, events should be fired on elements.
In order to fire events, each clickable element first has to be
identified on the browser’s DOM tree. If such a clickable
is moved or changed, the XPath expression used initially
will not be valid any longer. To detect the intended element
persistently in each test run, we use various properties of the
element such as event handler(s), attributes, children nodes,
and text value. Using a combination of these properties our
element resolver searches the DOM for a match with a high
level of certainty.

C. Updating the Test Suite

To detect newly added and removed states, we need to
update our test suite. To that end, we crawl the new version
of the application again, and reuse as much data from the
old inferred state-flow graph (of the previous version) as
possible, to build a new state machine.

When our crawler is in state A and it detects a new state B
via event E, it tries to match B with a state in the old graph.
From the old graph, candidate states that are as close as
possible to our new state, in terms of equality and relations
(parent and children) to other states. Candidate states are
selected through four different approaches in the following
order:

1) all children of A;

index

state1

Todo; /HTML[1]/BODY[1]/DIV[1]/A[1]

state2

Add; /HTML[1]/BODY[1]/DIV[1]/DIV[1]/A[1]

state3

Save; /HTML[1]/BODY[1]/DIV[1]/DIV[1]/A[1] Cancel; /HTML[1]/BODY[1]/DIV[1]/DIV[1]/A[2]

state5

Remove; /HTML[1]/BODY[1]/DIV[1]/UL[1]/LI[1]/A[1]

Yes; /HTML[1]/BODY[1]/DIV[1]/A[1]

No; /HTML[1]/BODY[1]/DIV[1]/A[2]

Figure 10. Building a new state-flow graph by re-using information from
a previously inferred graph.

2) all states reachable via E;
3) all grandchildren of A’s parent;
4) all states with the same pipelined DOM hash code.

Take as example a second crawl session on a new version
of TODO, where Figure 2 is our old graph. Our crawler
always starts in the index state, thus knowing its starting
point in the old graph. When it fires an event and finds a
new state, there is a high possibility that this state is one
of the children (outgoing) of the index state. Approach 1
selects state1 and checks whether it is equivalent to the new
state. If that is the case, (a reference to) state1 is added to
the new state-flow graph, else it is added as a completely
new state.

Now imagine that we are in state3 and the confirmation
page state4 is completely replaced by a new state state5. We
could consider this as a removing a state and adding a state
scenario. None of the steps above is able to find a match
in the old graph, thus state5 is added to the new graph, as
shown in Figure 10 (The dashed and dotted lines are the
state transitions that are not crawled yet).

The outgoing states (e.g., state3) from state5 cannot be
checked by 1 because state5 does not exist in the old
graph. If the event handler (e.g., onclick=’cancel()’ of
the clickable element can be determined, approach 2 is used.
Events initiate state transitions and therefore the related
states form plausible candidates. If 2 cannot be applied or
does not return an equivalent state, approach 3 is used.
Since state5 is a new state, we cannot directly determine its
children in the old graph. Approach 3 solves this problem
by selecting the grandchildren of the current state’s (state5)
parent (state3), which are state1 and state3) in the old graph.
As a last resort, when no equivalent state is found, the
old graph is searched entirely by comparing the hash codes
(approach 4).

The test suite can easily be updated with this newly
inferred state-flow graph, which contains the old matched
states as well as the newly added states. In addition, the test
code corresponding to the obsolete states is removed.

131



Figure 11. Visualizing the DOM tree differences that caused a regression test failure.

V. IMPLEMENTATION

Our approach is implemented in Java and integrated in
the open source testing tool CRAWLJAX [12].2 The imple-
mentation details of the crawler, CRAWLJAX, can be found
in [10].

We have implemented a number of generic comparators,
each of which is responsible for ignoring merely one type
of difference. To name a few: Whitespace, Attributes, Style,
Datetime, Structure, List, Table, Regex, and XPathExpres-
sion.

To assist the tester, an SWT-based GUI is implemented
for analyzing various crawl sessions. Through this user
interface, DOM templates can automatically be generated
by selecting a state or by selecting the desired parts of the
DOM tree. From these templates, oracle comparators (in
Java) can also be created automatically and added to the
pipelining mechanism. There is currently support for gen-
erating templates for following structural elements: TABLE,
UL, OL, SELECT, and DL. The comparators can use these
templates by stripping the matching string from the DOM
tree. The Structure comparator supports all the mentioned
elements.

Understanding why a test case fails is very important to
determine whether a reported failure is caused by a real
fault or a legal change. To that end, our toolset gener-
ates a detailed web report that visualizes the failures. We
format and pretty-print the DOM trees without changing

2 http://crawljax.com

their structure and use XMLUnit3 to determine the DOM
differences. The elements related to the differences are
highlighted with different colors in the DOM trees. We also
capture a snapshot of the browser at the moment the test
failure occurs and include that in the report. In the report, it
is possible to view the stripped DOMs, but also the complete
DOM trees to check whether differences are falsely ignored
by the comparators. Other details such as the sequence of
fired events, JAVASCRIPT debug variables, and the list of
applied comparators are also displayed. Figure 11 shows a
screenshot of a generated report.

VI. EMPIRICAL EVALUATION

To assess the usefulness and effectiveness of our approach,
we conducted two case studies [20]. Our evaluation ad-
dresses the following research questions:

RQ1 How effective is our regression testing approach?
RQ2 How much manual effort is required in the testing

process?
RQ3 How scalable is our approach?

To measure the effectiveness, we analyze the observed
false positives and false negatives in our case studies. A
false positive is a mistakenly reported fault that is caused
by dynamic nondeterministic behavior. A false negative is an
undetected real fault that is missed by the oracle comparator.
To address RQ2, we report the time spent on parts that
required manual work.

3 http://xmlunit.sourceforge.net/

132



Click tags a:{}, input:{class=add button}
Exclude
tags

a:{title=Delete%}, a:{class=delete-button}, a:{act=star;
class=fav-button}, a:{act=unstar; class=fav-button%}

Generic
Compara-
tors

WhiteSpace, Style, Table, List

Table I
CONFIGURATION FOR HITLIST. % IS A WILDCARD.

A. Study 1: HITLIST

Our first experimental subject is the AJAX-based open
source HitList,4 which is a simple contact manager based
on PHP and jQuery.5

To asses if new features of an application can be detected
correctly, we created three versions of HITLIST, with each
version containing the features of its previous version plus:
V1 Adding, removing, editing, viewing, and starring con-

tacts,
V2 Search functionality,
V3 Tweet information about the contact (Twitter details).

Additionally, in V3 we seeded a fault that causes the lead-
ing zeros in phone numbers to be missed, e.g., 0641288822
will be saved as 641288822. We will refer to this as the
leading-zero bug.

Table I shows parts of the configuration of our tool for
HITLIST (manual labor: 1 minute), indicating the type of
DOM elements that were included and excluded in the
crawling phase. Based on this input, CRAWLJAX crawls the
application and generates a test suite. The pipelined generic
oracle comparators that are used in the test suite can also
be seen in the table.

We measure the effects of our oracle comparator pipelin-
ing mechanism and the clickable resolving process, by
enabling and disabling them during the regression testing
phase. To constrain the state space, we created a CrawlCon-
dition that ensures a contact can only be added once during
the crawling phase. This is done by checking a JAVASCRIPT
condition in the Add Contact state, as shown in Figure 6.

Version 1. From V1, TEST SUITE A was generated
from 25 states and the transitions between them, consisting
of 11 test cases. With the comparators and resolver
enabled, TEST SUITE A reported only one failure on V1,
which occurred after a new contact was added. Closer
inspection revealed that this state contains a link, (<A
class="action view details" href="javascript:;"
id="125" >View details</A>) with the id of the new
contact. Since every contact has a unique id, this link is
also different for every contact and therefore results in
a state failure. This was easily resolved by creating (1
minute) a comparator with a precondition, which stripped
the value of the id attribute from the Contact Added state.

4HITLIST Version 0.01.09b, http://code.google.com/p/hit-list/
5 http://jquery.com

Test Tested #SD #SD #SD #SD Reduction
suite on (ER) (OCP) (ER, OCP) (ER, OCP)

A V1 60 11 60 0 100%
A V2 194 110 64 0 100%
B V2 60 27 60 0 100%
B V3 415 329 232 210 36%
C V3 95 52 80 1 98%

Table II
NUMBER OF REPORTED STATE DIFFERENCES (SD) WITH AND WITHOUT

ELEMENT RESOLVER (ER) AND ORACLE COMPARATOR PIPELINING
(OCP), FOR HITLIST.

The Table comparator turned out to be very powerful, since
it modeled the contact list as a template, and thus prevented
state comparison failures after adding a new contact to the
list and re-executing the test suite. We manually augmented
(5 minutes) this generated template and created a custom
Contact comparator for the contact list. This template also
serves as an invariant, because it checks the structure as
well as the validity of the contact’s name, phone number,
e-mail, and id.

Version 2. We executed TEST SUITE A on V2 (with the
new search functionality) and all the tests passed. Without
oracle pipelining, there would be many failures, because of
the added search button (see Table II). The List comparator
modeled the navigation bar, which is always displayed,
as a template, thus ignoring the added search button and
the Contact comparator stripped the differences caused by
adding new contacts, in the contact list. To update the
test suite, we crawled V2, and there were two new states
detected automatically: the search page and the search results
page. Note that no other states were added, because of the
List and Contact comparators. TEST SUITE B was generated
from this crawl session, which passed successfully when
executed on V2.

Version 3. All the test cases of TEST SUITE B except
one (test case checking the initial state), failed on V3, which
contained the new Twitter information and the leading-zero
bug. The reason was that in all of the test cases the Contact
Details state or the Add Contact state were visited, which
contained the extra Twitter data. In the generated report,
partially shown in Figure 11, we could easily see and analyze
these differences. The crawling of V3 resulted in a total of
31 states, where 22 states were removed and 26 states were
added (related to the previous versions), i.e., four states were
unchanged. TEST SUITE C was generated from the inferred
state-flow graph. When we executed TEST SUITE C on V3,
we found a failure in the initial state, while nothing was
changed in the Contact List page and in previous test suites
there were no failures reported on this state. The Contact
comparator could not match the template because of the
wrong format of the phone number. The leading zero bug
could therefore easily be detected and seen in the error
report.

133



Click tags a:class=link, div:class=goog-button-body
,a:id=sub-tree-item-%, span:class=link item-title
overview-item-link

Exclude tags a:href=%directory-page, a:id=sub-tree-
subscriptions

Comparators WhiteSpace, Style, Date, Table, List
Max # states 12, 30
Stripped Attributes closure_hashcode_[a-zA-Z0-9]+

Table III
CONFIGURATION FOR GOOGLE READER EXPERIMENT.

Results. Table II presents the number of reported state
differences (false positives) with and without enabling the
element resolver and oracle comparator pipelining processes.
Note that the one state difference reported by TEST SUITE
C on V3 using both mechanisms is an actual fault, which is
correctly detected.

Findings. Regarding RQ1, the combination of oracle
comparators and element resolver dealt very well with dy-
namic DOM changes, and reduced the false positives, up to
100%. Without the oracle comparators almost every test case
would have failed and detection of changed/removed states
would be much more error-prone. Using only the generic
comparators would result in a false negative, namely the
leading-zero bug, which is ignored by the Table comparator.
However, with the custom Contact comparator, we were
able to detect the faulty phone number in V3. Added or
removed contacts did not result in any problems because of
the generated templates. Replaced clickables were correctly
identified by our element resolver mechanism. For instance,
the search functionality added in V2 caused many elements
to be replaced. Without the resolver, many wrong transitions
would be chosen and different states would be entered than
expected, resulting in many state differences, as shown in
Table II. As far as updating the test suite is concerned,
our approach performed very well. The added states in V2
and V3 were easily detected and added to the test suite,
while keeping the rest of the test suite unchanged. The
state differences could easily be analyzed in the report and
through the GUI, the added and removed states were easily
distinguishable.

Considering RQ2, most of the false positives were dealt
with by the generic oracle comparators. We did have to
manually set the correct CRAWLJAX properties for crawling
and testing HITLIST and create two custom comparators,
which in total cost us about 7 minutes. On average, each
crawling and test execution process took less than 2 minutes.

B. Study 2: GOOGLE READER

To examine the scalability of our approach (RQ3), we
chose GOOGLE READER6 as our second subject system.
GOOGLE READER has an extremely dynamic AJAX-based

6 http://www.google.com/reader

Test Cases #SD (ER) #SD (ER, OCP) Reduction
10 51 33 35%
25 366 162 55%

Table IV
NUMBER OF REPORTED STATE DIFFERENCES (SD) WITH AND WITHOUT

CUSTOM ORACLE COMPARATOR PIPELINING (OCP) FOR GOOGLE
READER.

user interface consisting of very large DOM trees (+500
KB).

Table III shows the CRAWLJAX configuration properties
set (3 minutes) for GOOGLE READER. Before the DOM
tree is used, ATUSA strips the predefined HTML attributes
(closure_hashcode_[a-zA-Z0-9]+), which are different
after every load, and could easily result in 200+ state dif-
ferences alone per state. A preCrawling plugin was created
(less than 5 minutes) to automatically log in the application.
To control the study, we constrained the state space by
choosing a maximum number of crawled states of 12 and 30,
on which 10 and 25 test cases were generated, respectively.

In this case study, we evaluated the effectiveness of our
approach by counting the number of reported false positives
with and without the pipelining. The element resolver is
always enabled for this study. Table IV shows the average
number of state differences, taken in 3 test runs, and the
achieved reduction percentage by pipelining the generic
oracle comparators.

Note that due to the high level of dynamism in GOOGLE
READER, each consecutive test run reported many (new)
state differences. The time between crawling and testing
also had a large influence on the number of the found state
differences. To further reduce the number of false positives,
we created custom comparators (10 minutes) capturing a
number of recurring differences in multiple states. For in-
stance, these comparators were able to ignore news snippets,
post times e.g., ‘20 Minutes ago’, unread counts, and one-
line summaries.

Applying our custom oracle comparator along with the
generic oracle comparators resulted in a total reduction of
from 50% up to 95%. In some cases, only a few false
positives remained over.

We also created a comparator based on a generated
template for the Recently read widget (less than 10 minutes)
via the GUI. This oracle comparator completely solved the
differences in this widget, which reduced the number of
differences drastically. On average, each crawling and test
execution process took between 5 to 10 minutes.

Findings. The generic comparators help in reducing the
number of false positives (up to 55%), but they certainly
cannot resolve all differences when dealing with extremely
dynamic applications such as GOOGLE READER. Custom
comparators can be of great help in further reduction (up
to 95%), the creation of which took us about 20 minutes.

134



Having knowledge of the underlying web application helps
in creating robust comparators faster. Although the crawling
and test execution time varied, on average one test (firing
an event and comparing the states) cost about 2-5 seconds,
with occasional peaks of 40 seconds with very large DOM
trees. It is also worth mentioning that it is very important
to have a large enough delay for the DOM tree to be
updated completely, after an event is fired in the test cases.
Otherwise, an incomplete DOM state could be compared
with a complete state in the gold standard and result in a
failure.

VII. DISCUSSION

Applicability. Correctly making a distinction between
irrelevant and relevant state differences in regression testing
modern dynamic web applications is a challenging task,
which requires more attention from the research community.
Our solution to control, to some degree, the nondeterministic
dynamic updates is through pipelining specialized oracle
comparators, if needed with preconditions to constrain the
focus, and templates that can be used as structural invariants
on the DOM tree. Although implemented in CRAWLJAX,
our solution is generic enough to be applicable to any web
testing tool (e.g., Selenium) that compares the web output
with a gold standard to determine correctness.

Side effects. A consequence of executing a test case
can be a changed back-end state. We capture such side
effects partly with our templates. However, not all back-end
state changes can be resolved with templates. For instance,
consider a test case that deletes a certain item. That item
can only be deleted in the first test execution and a re-run
of the test case will fail. Our approach currently is to setup
a ‘clean-up’ post-crawling plugin that resets the back-end
after a crawl session and a oneTimeTearDown method that
brings the database to its initial state, after each test suite
execution. Clickables that are removed or changed in a way
that cannot be resolved by the element resolver can also
cause problems, since it is not possible to click on non-
existing elements and clicking on changed elements could
cause transitions to unexpected states. Test suite repairing
techniques [9] may help in resolving this problem.

Threats to Validity. Concerning external validity, since
our study is performed with two applications, to generalize
the results more case studies may be necessary; However,
we believe that the two selected cases are representative of
the type of web applications targeted in this paper.

With respect to reliability, our tools and the HITLIST
case are open source, making the case fully reproducible;
GOOGLE READER is also available online, however, because
it is composed of highly dynamic content, reduction per-
centages might fluctuate. Our main concern in conducting
the case studies was determining to what degree the number
of false positives reported during regression testing could
be reduced with our technique. Although we seeded one

fault and it was correctly detected, we need more empirical
evaluations to draw concrete conclusions on the percentage
of false negatives.

A threat to internal validity is that each state difference
reported in the case studies, corresponds to the first encoun-
tered state failure in a test case. In other words, when a
test case has e.g., five state transitions and the first state
comparison fails, the results of the remaining four state
comparisons are unknown. This fact can affect (positively
or negatively) the actual number of false positives.

VIII. RELATED WORK

While regression testing has been successfully applied
in many software domains [9], [14], web applications have
gained very limited attention from the research community
[19], [18].

Alshahwan and Harman [1] discuss an algorithm for
regression testing based on session data [16], [5] repair.
Session-based testing techniques, however, merely focus on
synchronous requests to the server and lack the complete
state information required in AJAX regression testing.

The traditional way of comparing the test output in
regression testing web applications is through diff -based
comparisons, which report too many false alarms. Spren-
kle et al. [17] propose a set of specialized oracle comparators
for testing web applications’s HTML output, by detecting
differences in the content and structure through diff. In
a recent paper, Soechting et al. [15] proposed a tool for
measuring syntactic differences in tree-structured documents
such as XML and HTML, to reduce the number of false
positives. They calculate a distance metric between the
expected and actual output, based on an analysis of structural
differences and semantic features.

In our approach, each comparator is specialized in strip-
ping the differences from the expected and actual output
and then use a simple string comparison. In addition, we
combine the comparators by pipelining the stripped outputs,
to handle the highly dynamic behavior of AJAX user inter-
faces. We also constrain the state space to which a certain
comparator has to be applied by means of preconditions.

IX. CONCLUDING REMARKS

This paper presents an approach for controlling the highly
dynamic nature of modern web user interfaces, in order to
conduct robust web regression testing. The contributions of
this paper include:
• A method, called Oracle Comparator Pipelining, for

combining the power of multiple comparators, in which
each comparator processes the DOM trees, strips the
targeted differences, and passes the result to the next
comparator in a specified order.

• The combination of oracle comparators with precondi-
tions, to constrain the state space on which a compara-

135



tor should be applied as well as a method for updating
the test suite.

• Automatic generation of structural templates for com-
mon DOM structures such as tables and lists, and
support for manual augmentation of application-specific
templates, which can be used as invariants.

• Implementation of these methods in the open source
tool CRAWLJAX, which, besides the crawling and test
generation part, comes with a set of plugins for generic
oracle comparators, support for visualization of test
failure thorough a generated report to give insight in
the DOM differences, and a GUI to view the added
and removed states in each crawl session.

• An empirical evaluation, by means of two case studies,
of the effectiveness and scalability of the approach, as
well as the manual effort required.

There are several directions for future work. Conducting
more case studies and adopting test repair techniques to deal
with deleted clickables are directions we will pursue. We
will also investigate possibilities of generating more abstract
templates that can capture a model of the application at
hand. In addition, finding ways of directing the regression
testing in terms of what parts of the application to include
or exclude forms part of our future research.

REFERENCES

[1] N. Alshahwan and M. Harman. Automated session data repair
for web application regression testing. In Proceedings of the
1st International Conference on Software Testing, Verification,
and Validation (ICST’08), pages 298–307. IEEE Computer
Society, 2008.

[2] C.-P. Bezemer, A. Mesbah, and A. van Deursen. Automated
security testing of web widget interactions. In Proceedings
of the 7th joint meeting of the European Eoftware Engineer-
ing Conference and the ACM SIGSOFT symposium on the
Foundations of Software Engineering (ESEC-FSE’09), pages
81–91. ACM, 2009.

[3] R. V. Binder. Testing object-oriented systems: models, pat-
terns, and tools. Addison-Wesley, 1999.

[4] S. Elbaum, K.-R. Chilakamarri, B. Gopal, and G. Rothermel.
Helping end-users ‘engineer’ dependable web applications.
In Proceedings of the 16th IEEE International Symposium
on Software Reliability Engineering (ISSRE’05), pages 31–
40. IEEE Computer Society, 2005.

[5] S. Elbaum, S. Karre, and G. Rothermel. Improving web
application testing with user session data. In Proc. 25th Int
Conf. on Software Engineering (ICSE’03), pages 49–59. IEEE
Computer Society, 2003.

[6] J. Garrett. Ajax: A new approach to web applications.
Adaptive path, February 2005. http://www.adaptivepath.com/
publications/essays/archives/000385.php.

[7] A. Marchetto, P. Tonella, and F. Ricca. State-based testing
of Ajax web applications. In Proc. 1st IEEE Int. Conference
on Sw. Testing Verification and Validation (ICST’08), pages
121–130. IEEE Computer Society, 2008.

[8] C. E. McDowell and D. P. Helmbold. Debugging concurrent
programs. ACM Comput. Surv., 21(4):593–622, 1989.

[9] A. M. Memon and M. L. Soffa. Regression testing of GUIs.
In ESEC/FSE-11: Proceedings of the 9th European software
engineering conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software engi-
neering, pages 118–127, New York, NY, USA, 2003. ACM.

[10] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling Ajax
by inferring user interface state changes. In Proc. 8th Int.
Conference on Web Engineering (ICWE’08), pages 122–134.
IEEE Computer Society, 2008.

[11] A. Mesbah and A. van Deursen. A component- and push-
based architectural style for Ajax applications. Journal of
Systems and Software, 81(12):2194–2209, 2008.

[12] A. Mesbah and A. van Deursen. Invariant-based automatic
testing of Ajax user interfaces. In Proceedings of the 31st
International Conference on Software Engineering (ICSE’09),
pages 210–220. IEEE Computer Society, 2009.

[13] J. Offutt. Quality attributes of web software applications.
IEEE Softw., 19(2):25–32, 2002.

[14] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In Proceedings of the 12th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE 2004), pages 241–252, 2004.

[15] E. Soechting, K. Dobolyi, and W. Weimer. Syntactic re-
gression testing for tree-structured output. In Proceedings
of the 11th IEEE International Symposium on Web Systems
Evolution (WSE’09). IEEE Computer Society, 2009.

[16] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Auto-
mated replay and failure detection for web applications. In
ASE’05: Proc. 20th IEEE/ACM Int. Conf. on Automated Sw.
Eng., pages 253–262. ACM, 2005.

[17] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and
S. Ecott. Automated oracle comparators for testing web
applications. In Proc. 18th IEEE Int. Symp. on Sw. Reliability
(ISSRE’07), pages 117–126. IEEE Computer Society, 2007.

[18] A. Tarhini, Z. Ismail, and N. Mansour. Regression testing
web applications. In International Conference on Advanced
Computer Theory and Engineering, pages 902–906. IEEE
Computer Society, 2008.

[19] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen. Regression
testing for web applications based on slicing. In Proceedings
of the 27th Annual International Conference on Computer
Software and Applications (COMPSAC’03), pages 652–656.
IEEE Computer Society, 2003.

[20] R. K. Yin. Case Study Research: Design and Methods. SAGE
Publications Inc, 3d edition, 2003.

136


